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Turbulence measurements with inclined hot-wires 
Part 2. Hot-wire response equations 
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Hot-wire response equations to include the effects of the tangential velocity 
component as well as the non-linearities caused by high intensity turbulence are 
derived for linearized constant temperature operation. For low intensity turbu- 
lence similar equations are derived for constant current operation. The equations 
are applied to an X-wire arr'ay to determine the errors in selected turbulence 
quantities which arise from the assumption of cosine law cooling. The error 
depends upon the quantity measured, the method of operation, and Bld. For 
Pld = 200 the error ranges from 0 to 17 yo. 

The results of the heat transfer and temperature distribution measurements 
presented in part 1 indicate that an inclined hot-wire is sensitive to the tangential 
velocity component along the wire. This sensitivity must be taken into con- 
sideration when interpreting data from inclined hot-wires. A wire is best calibrated 
directly at all desired yaw angles, but it may be calibrated only normal to the 
flow and then corrected for yaw with the equations derived below. 

Define intrinsic co-ordinates s, n, t with e, as a unit vector tangent to the mean 
streamline, while en and e, coincide with the principal normal and binormal 
directions, respectively, of the mean streamline as shown in figure 1. Let Q, be the 
resulting mean velocity and q,, qn and ql be the velocity component fluctuations 
in the s, n, t directions, respectively. The notation Q and q rather than the con- 
ventional and u for the velocity components is used here to coincide with the 
notation used recently by Rose (1962). 

The magnitude of the instantaneous velocity vector is (figure 1) 

&I = [(Q, + qA2 + + qEI4- (1) 

Qg = Qp[cos2 p3 + k2 sin2 p,], (2) 

The instantaneous effective cooling velocity is given by 

where p3 is the angle between the instantaneous velocity vector and the normal 
to the wire axis. For this derivation the wire is located in the (s, n)-plane although 
the results can be readily modified for the case of the wire located in the (s, t)-plane. 
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P3 can be expressed in terms of a, the angle between the normal to the wire and 
the mean flow direction, and the velocity components as follows. Applying the 
cosine law of trignometry (see figure 1) yields : 

sin2a COSP, cosP4 
c0sZP4 2 sin a * (3) I 

Direction of mean 
velocity vector 

qn 

\ Direction of instantaneous 
velocity vector 

FIGURE 1.Velocity component diagram. 

The angles PZ and P4 are defined by 

sin Pz = 4 d Q S  + e l 2  + a: + a“,l-t cos P 2  = “Q8 + as )2  + 421 [(Q, + aA2 + at + a w ,  
sinP4 = 4lt[(Q8 + %I2 + 4tl-4 cosP4 = CQS + 481 [ (Q,  + a 2  + 421-4. 

(4) 

a; + 43- t .  ( 5 )  

Introducing (4) into (3) and rearranging gives 

- sinp, = [ - sin a + cos a4,(Qs + !?s)-lI [Q, + 481 C(Q8 + 
Squaring (5) gives 

-2sina~osa($+~*) +cos2a$].  ( 6 )  
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The denominator of this equation may be expanded in a power series to give 

+ 4 " " + qs " + 4th order terms. (7 )  Q," 
Substituting (7) into (6) and collecting terms gives 

which agrees with the result of a similar derivation presented by Heskestad (1963). 
~ 

Thus, 
1 

cos2P3+k2sin2/33 = cos2a 1+k2tan2a+(k2-1) __ -- 
(cos2 a ( Q," Q," 

QZ; + 2q: + 7 - 2  
Qs 

qs q: + 2eq:  - 2 tan a qn qnqs qnq? ~ qnq," qn 
Q: (Q, Q, Q," Q," Q," 

Now Q2 1 -  - Q ," ( 1+22+-- is d+&+q:)  , 
Q," 

Therefore, 

Next, a power series expansion to obtain QE gives 

QE(a)  = Q, cos a 1 + k2 tan2 a - k4 & tan4a + (1 + k2 + tan2 a - k4 6 tan4 a )  qJQ, 

+ (tan a - k2 tan a( 1 + 4 tan2 a)  + k4 4 tan3 a( 1 + 2 tan2 a))  qn/Qs 
1 tan2 a tan4 a 

-k (-a- k2- 

+ (k2(++tan2a(l +&tan2a))-#k4tan2a(4+tan2a+# tan4a))q2,/Q," 
- k4 tan4 aq,"/Q," + ( - k2( + + tan2 a + + tan4 a)  
+ k4($ tan2 a + $ tan4 a +$ tan6 a)) q,qi/Q: 
+ k4( 6 tan3 a - $ tan5 a)  qn q,"/Q: 

k4 -> C 0 S 2 a  q?/Q," - #k4 tan4 aq,"/Q," 

$tan2a+--)) 3 q,qf/Q," 
cos2a 

3tan3a tan5a 
(1 + Q tan2a) + k4 $ tan3 a - - 2cos2a ~ + 3 ~ ) )  cos2a qn q4/Q," +(,,tans 2 cos2 a ( 
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to third order in the turbulence terms and to fourth order in k. This expression is 
sufficient for most applications as the third-order turbulence terms are often 
negligible and k rarely exceeds 0.2. 

If consideration is restricted to low intensity turbulence for clarity ofpresenta- 
tion, the second- and third-order terms in ( 1  1) can be neglected. This gives 

QE(a)  = Q, cos a[ 1 + &k2 tan2 a - $k4 tan4 a + (1 + &k2 tan2 a - $k4 tan4 a)  qJQS 

+ (tan a - k2 tan a( 1 + & tan2 a)  + &k4 tan3 a( 1 + $ tan2 a ) )  q,/Q,]. ( 1 2 )  

Define qE(a) as the effective fluctuating velocity component, i.e. the fluctuating 
part of QE(a) .  Then (12 )  yields 

qE(a) = Q, cos a[( 1 + &k2 tan2a - ik4  tan4 a )  qs/Qs 

+ (tan a - k2 tan a( 1 + 4 tan2 a)  + 4k4 tan3 a( 1 + $ tan2 a))  q,/&,]. (13) 

Linearized constant temperature operation 

The output voltage of a linearized constant temperature hot-wire anemometer is 
given by 

E(t )  = E+e(t)  = KQE(t), 

where QE is given by (12). Applying ( la) ,  (13) and (14) to an ideal X-wire array 
(shown in figure 2) gives 

or 

where the subscript c denotes corrected for the effect of the tangential velocity 
component and the subscript N denotes normal component cooling only. 

Constant current operation 
The constant current method operation is useful only in low intensity turbulence 
because of the non-linear character of the response to fluctuations in magnitude 
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and direction of the fluid velocity. The derivation will therefore be restricted to 
low intensity turbulence, for which the linearized approximation 

= A,+B,(Q,(a))t 

is valid. Ze and re stand for ‘equilibrium resistances ’ as defined by Corrsin ( 1963). 
R, is the resistance of the wire evaluated at ambient temperature, T,. 

l(3-45”) 

FIGURE 2. Schematic diagram of turbulent velocity components on an X-wire probe. 

The mean and fluctuating parts of the voltage are given by 

E = IRe, e ( t )  = Ir,(t). (23,241 

The square root of the effective cooling velocity may be obtained from power 
series expansion of (10). If this expression for Qk(a) is combined with (22), (23) 
and (24), the following results are obtained: 

(25) 

(26) 

(27) 

El = Ez = ($ - R,) I-1 [A, + I?,(&, cos a)& (1  + $k2- +@*)I, 
__. - 

1+4p--k4 - PsQlo pg)c= (1-2k2+&k4) ( Q i ) N ’  
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The error in turbulence measurements caused by assuming normal component 
or cosine law cooling can now be assessed. With a value of k = 0.20, which 
corresponds to an t / d  E 200, it  follows from (19), (20) and (2 1) that for linearized 
constant temperature operation 

Similarly, for constant current operation, there results 

Although errors from many sources arise in turbulence measurements, the 
above errors are not negligible and should be taken into account when making 
careful turbulence measurements. 
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